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    Abstract.   When performing Tikhonov or similar types of regularization of ill-conditioned linear 

systems, a free parameter λ must be determined.  Common techniques such as use of L-curves are 

somewhat daunting for non-experts, and automated methods of choosing λ have not been widely applied.  

A given choice of λ implies a corresponding residual for the resulting regularized system.  An appropriate 

residual is easily determined from the error level in the right hand side if that is known.  This paper points 

out that a useful estimate for the error in the right hand side can be determined automatically by projecting 

the rows of the matrix onto the “usable” rows of an orthogonalized version of the system.  Thus, the 

problem of picking λ is transformed into one of picking a “usable rank” at which to split the orthogonalized 

system.  A widely applicable heuristic is presented which picks this usable rank.  Realistic applications of 

such a general-purpose algorithm will require support for a variety of constraints.  This paper presents 

straightforward methods to add a non-negativity constraint, equality constraints, and inequality constraints 

to the automatically regularized solution process.  A software implementation is available from the author.  
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1. Introduction. In this paper we present a method for producing an automatically 

regularized solution, with various constraints, for a wide class of ill-conditioned and/or 

rank-deficient linear systems, bAx ≈ , where A is nm× with m and n arbitrary.   

Regularization is widely used in a variety of contexts, and especially in the field of 

inverse problems.  Common regularization methods such as that of [Tikhonov] require 

choice of a free parameter, λ, which is typically a task for an expert in the field.  Thus 

regularization is often difficult for non-experts or in automated contexts in which 

software would need to adapt the value of λ to the given data.  A few automatic 

regularization schemes exist [Wahba], [Jones], [Hansen], [O’Leary] but automatic 

regularization schemes have not routinely been used for a variety of reasons, such as 

unreliability of early methods, and the lack of methods which guarantee a non-negative 

solution.  Non-negativity is essential in many contexts, where negative values are not 

physically meaningful.  Sometimes other constraints are needed.  

The earliest proposed automatic regularization method was that of [Wahba], which never 

received wide use, perhaps because its reliability may be less than what users expect.  

The method of [Jones] was also an early approach.  This method estimates the error in the 

right hand side automatically, by splitting the system of equations into usable and 

unusable rows based on a Picard-like condition.  Then a projection scheme is used to 

estimate the right hand side error.  With this error estimate in hand a variety of 

regularization methods can then be automated.  This method was not widely published 

originally, and was also not as reliable as needed except for highly ill-conditioned 

problems.  This method has been updated and improved for this paper.  A more recent 

automatic method is Hansen’s automated L-curve analysis, which is available primarily 
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as a Matlab plug-in [Regtools].  Hansen’s method sets a higher standard for reliability 

than Wahba’s method; a level apparently matched by the method presented here.  Our 

method also provides an explicit threshold for a linear system to be considered ill-

conditioned, which is a useful feature in practice.  An automatic regularization method by 

O’Leary [O’Leary] was not evaluated for this paper. 

 

None of the previously available automatic regularization methods provides realistic 

constraints on the solution, such as non-negativity, even though non-negativity methods 

are well known, at least for well-conditioned problems.  For example, see [Hanson].     

 

The goal of this paper and the software being offered is to advance the use of automated 

regularization.  The method we present appears to be relatively reliable, is implemented 

in C++ in a form callable from other languages, includes a range of constraints, 

beginning with non-negativity, and is free to students and academic researchers. 

 

In Section 2 below we present some of the necessary background information for our 

methods.  In Section 3 we discuss the “usable rank” concept, which includes 

consideration of the right hand side in the rank.  In Section 4 we present the second key 

point: how to accurately estimate the right hand side error, σ, given a chosen usable rank.  

In Section 5 we briefly discuss determination of the Tikhonov regularization parameter 

using the estimated σ.  In Section 6 we present some background on implementing non-

negativity, and suggest a useful method.  In Section 7 we briefly present what is required 

to add general equality and inequality constraints.  An example is shown in Section 8. 

 

2. Background   Consider the system of equations 

 (2.1)   bAx ≈     

 where the shape and size of A are arbitrary.  In the following work we assume that the 

user of this method has pre-scaled this system of equations as well as feasible to make the 

right-hand-side error estimates all have the same (unknown) standard deviation of σ.  

Failure to scale the problem well does not prevent use of our method, but it will 

effectively create an implicitly heavier weight for rows which have larger than average 

error and will skew the estimated value of σ away from the optimal value.  And at some 

point large unevenness in the errors in the right hand side may degrade the quality of 

solution to an unusable point.  We have not characterized this behavior well. The system 

can then be considered to have the form 

(2.2)   ebbAx +=≈ 0     

where A is m × n, with any shape for m  and n, 0b  is the vector of unknown “true” values 

of the right hand side, and the e is a vector of random deviates from a distribution with 

mean zero and standard deviation σ. 

  

We will solve such systems using a Singular Value Decomposition, or SVD.  Available 

software for the SVD usually processes only square or overdetermined systems.  Thus if 

m>=n, then 

(2.3) TUSVA =   

where U is m × n with orthonormal columns, S is n × n diagonal with diagonal elements 

si, and V is n × n with orthonormal rows and columns. (That is, .IVVVV TT == )  If A  is 
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underdetermined, one simply applies the SVD to A
T
 , reversing the names for U and V 

and transposing the result.  Then U is m × m with orthonormal rows and columns, S is m 

× m diagonal, and V is m × n with orthonormal rows.  In both cases, then, setting p = 

min(m,n),  we have U as  m × p, S as p × p,  and V as p × n, and the shape of A can be 

considered to be arbitrary. 

 

Substituting the SVD for A into (2.1) and multiplying by the transpose of U we have 

(2.4)  SV
T
x ≈  UT

b 

which we re-label as 

(2.5)   xSˆ ≈  β  

where x and x̂  have the same norm, and b and β  have the same norm.  The solution to 

this is, formally,  

(2.6)  x̂= S
-1
 β  

except of course that S may contain zeros.  The pseudo-inverse solution is then given by  

(2.7)     x̂ = S
+ β    

where S
+
 is diagonal with diagonal elements equal to 1/si except when si  is zero, when 

zero is substituted. The norm of x is given by 

(2.8)  2

1

2

2
)/( ii

r

i

sx β∑
=

=  

where r is the number of non-zero diagonal elements of S. The magnitude of the quotients 

in (2.8) are important in the following development, so we define 

(2.9) iii st /β=  

 

If the system (2.1) is simply rank deficient, without being otherwise ill-conditioned, (2.7) 

may provide a perfectly acceptable solution.  This situation does occur, such as when 

there is a simple linear dependency between certain rows.  But more generally the system 

is ill-conditioned after removing the zero singular values.  Ill-conditioning causes the 

series of ti values to behave like a diverging series: the successive values initially appear 

to be well behaved and even to be converging to zero.  But at some point they reverse 

direction and grow in an unbounded manner, ruining the solution entirely.  This behavior 

is contrary to the expected behavior, which is that the ti should generally decline as a 

function of i.  This requirement is sometimes called the discrete Picard condition. The 

first approach to addressing this behavior is sometimes to perform a truncated SVD 

solution. To do this one simply zeroes more of the ti than those zeroed by the pseudo-

inverse.  The choice of how many ti  to zero is problematic, and is typically done by 

plotting the resulting solution for a range of possible “ranks”, and choosing whichever 

one likes.  This is obviously not a process which we can automate.  A more sophisticated 

way to tame the ill-conditioning is to regularize the system by augmenting (2.1) to the 

form 

(2.10)   







≈









0

b
x

I

A

λ
     

 

This technique is associated with the name Tikhonov or the term “ridge regression” 

depending on the context. The larger the value of λ , the more the latter  ti are reduced.  
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The problem with this method is what value should be used forλ .  This can be answered 

in a variety of ways, including plotting the solution for various values of λ , adjusting 

λ until a maximum tolerable residual is reached, or plotting an “L curve” which displays 

the norm of  x = x(λ ) for a range of λ  values,  versus the corresponding residual (2.11).  

(2.11)  
2

)( bAx −λ   

Using the L curve one hopes to find an optimum tradeoff point between decreasing norm 

of x versus increasing residual.  One heuristic is to pick the point on the curve closest to 

the origin.  If this choice is made in software, then an automatic regularization process 

results.  An example implementation is in [Regtools].  This is an alternative to the 

method we develop in this paper, and could be used instead of our method by 

incorporating the constraint methods we present.  We prefer to present a version of the 

method of [Jones 1985] due to the direct manner in which the regularization is based on 

the error present in the system.  Our method directly estimates the unknown standard 

deviation σ. 

 

When we have an estimate of the value of σ, then an appropriate value for λ can be 

computed using the “discrepancy” principle [Hansen].  That is, one adjusts λ  until the 

average, or root-mean-square change to the bi is equal to σ.  That is, until  

(2.12)  22

2
)( σλ nbAx =−  

 

Where necessary, we will refer to the i-th column of a matrix A as Ai  and the i-th row of a  

matrix A as A
i
.  We denote the dot product of two equal length one-dimensional 

structures a and b as <a,b> whether a and b are actually vectors, rows, columns, or 

combinations, as will be clear in context.  

 

3. Determining the Usable Rank  When the system (2.1) is well-conditioned the ti 
coefficients in (2.9) should satisfy the so-called “discrete Picard condition” [Hansen], 

which says that the ti should trend downward, or that the iβ should decrease (in 

magnitude) faster than the is . But as mentioned in the introduction, the typical behavior 

when the system is ill-conditioned is that the summation in (2.8) behaves much like a 

diverging series: the magnitudes of the successive ti may initially drop off nicely as 

expected by the Picard condition, or they may fall initially then wander in a moderate 

range briefly.  But the ti eventually begin to grow in an unbounded manner.  Were it not 

for the removal of zero singular values some ti  would be infinite.  The graph below 

shows a semi-log plot of  the ti  for an inverse heat problem with a matrix of size 15 × 51.  

The ti appear to be trending downward slightly through index 6, then clearly reverse 

course and grow exponentially.  The initial behavior may be a slight drop, as here, or a 

much stronger drop, or in same cases no noticeable drop.  But the exponential growth 

after some point is typical of ill-conditioned systems, and especially so of inverse 

problems.  
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Figure 3.1. Typical behavior of the row contributions, ti 

 

 

What we want to do here, given a linear system, is to reliably find a row in (2.4) beyond 

which the discrete Picard condition is clearly violated.  The portion of the system up to 

and including the final acceptable row will be called the “usable” portion, and to have a 

“usable rank” equal to the number of rows in the acceptable portion.  It is not especially 

important that the usable rank be as small as possible… it is better to include some extra 

rows in the usable portion if there is doubt as to the best choice.  But most of the rows in 

the range of the exponential growth of the ti need to be excluded.  We will assume that 

the usable part of the matrix A then represents for practical purposes a basis for the span 

of the non-null space of the A, and that the iβ  beyond the usable rank represent for 

practical purposes images of the error in the right hand side.  Indeed, a first estimate of σ 

can be obtained by simply computing the root-mean-square of the iβ  for rows beyond 

the usable rank.  But there are practical problems with that approach, such as the fact that 

the number of such error samples can be very small… possibly just one.  A much better 

approach is available, as explained in the next section.   

 

For many problems it might actually be good enough to set the usable rank equal to the 

index of the smallest  ti . If the ti decline more or less uniformly to that point then the 

discrete Picard condition is satisfied for that subset of the linear system, and not satisfied 

for the remainder, which is our goal.  But that strategy is not nearly adequate for a 

general purpose algorithm which is expected to produce a good break point in a wide 

variety of contexts.  Problems with that simple approach include the fact that sometimes a 

particular value of iβ may be nearly zero, but not indicate a meaningful minimum; that 

many problems exhibit highly oscillatory behavior within the usable portion, and there is 

no significant meaning to any of several near-minimum values of iβ ; that there may be a 

well defined minimum point, but the rise after it may be so minor as to not warrant 

treating the problem as ill-conditioned; etc.  Sometimes the Picard condition is tested 
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using some kind of smoothing formula centered on each index i. But formulas centered 

about each index necessarily include an odd number of values, and a sum of an odd 

number of terms will nearly replicate any problematic oscillation which is present.  And, 

when the smoothing formula involves a geometric mean, as is typical, the smoothed 

result is subject to a false minimum when one term is near zero.  All these difficulties can 

be resolved by minor adjustments: use an even number of terms in the smoothing 

average, and use an arithmetic mean rather than a geometric mean to avoid pathologies 

associated with insignificant near-zero term.  A minor complication is that the smoothed 

terms no longer have an obvious one-to-one identification with the original terms.  One 

obvious approach, then, is just to use the norm (or its square, which is equivalent here) of 

successive segments of the vector x̂ .  That is,  

 

(3.1)  2
3

2

2
)/()3:( ii

j

ji

j sjjxa β∑
+

=

=+=  

We can find a usable rank more reliably by examing the sequence of these segment 

norms, aj , with some care.  We have found the following to work well in an extensive set 

of tests. 

 

(3.2) 1. set lo = value of  j at which aj  is minimal 

  2. set hi = value of  first  j > lo, at which aj > min(15*alo , 1.1 * a0) 

 3. if no such value exists, then the problem does not require regularization,  

so set ur=min(m,n)  and exit 

 4. set hi =  value of first  j > lo, at which aj > min(3*alo , 1.1 * a0) 

 5. set ur = value of j within hi <= j <= hi+3 at which tj  is maximal 

 6. for j=ur down to j=lo+1… 

if tj-1 < tj  then set ur = j-1; otherwise exit 

 

In other words, we first seek the minimum of the (squared) segment norms.  Then, we 

check to see if the segment norms ever grow significantly above that level.  Note that we 

dealing with squared norms, and only ask for this measure to increase by a factor of 15 

(which is arbitrary, but chosen through extensive tests).  So not a great deal of growth is 

required, but this test avoids our applying regularization in parametric contexts in which 

some – or many -- of the systems exhibit no ill conditioning. If we decide to regularize, 

we look for the first point at which the squared segment norms rise by a factor of just 3.  

Note that we have an alternate limit of 1.1 times the first segment norm.  This is to handle 

certain pathological cases in which the ti never decrease significantly. We take the initial 

usable rank to be the peak of the ti in that segment.  Then, in the last step we allow the 

usable rank to walk down the exponential growth curve (to the left) as long as the ti drop 

monotonically.  Steps 5 and 6 are probably is no importance in most practical inverse 

problems. But they were found to be valuable for very small or very low rank problems. 

 

The usable rank, as just defined, will typically be larger than the best choice of rank to be 

used in a truncated SVD solution. This is as planned, as we want to be sure to include all 

the usable data, and we are going to regularize the usable portion of the system, not just 

use a truncated SVD.  If the usable rank is maximal (that is, equal to min(m,n) ) then the 

system is not sufficiently ill-conditioned for our algorithm to apply.  This can often be 
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corrected by added more equations (if available) to make the system more ill-

conditioned.  This is counter-intuitive, but highly effective, as the extra equations make 

the latter ti rise higher, so the usable rank is easier to detect. 

 

 

4. Estimation of the Right Hand Side Error, σ.  Now that we have a determined the 

usable rank, ur , we need to extract an estimate of the standard deviation of the right hand 

side, σ.  We split (2.4) into “usable” and non-usable parts.  The non-usable rows are the 

rows beyond row ur in the following system: 

(4.1)    Cx = SV
T
x ≈  UT

b = U
T
(b0+e) = U

T
 b0  + U

T
e = eb ˆˆ

0 + = d 

Note that since U
T
 is orthonormal, the norm of ê is the same as the norm of e.  Were the 

system completely accurate, e would be a vector of zeroes, and the latter components of 

0b̂  would be small compared to the already small corresponding singular values, si, as the 

Picard condition requires.  At rows below ur the right hand side values in (4.1) are 

dominated by the elements of ê , and so are almost purely samples from a random 

distribution with meanσ .   Thus σ  could be estimated as the root-mean-square of those 

right-hand-side values.  That is,  

(4.2) σ = ∑
=

+=−

mi

ui

id
um 1

21
 

We note that this estimate of σ is biased very slightly to the high side due to the residual 

presence of the 0b̂  term in (4.1).   But the problem with this approach to estimating σ is 

that there may be a very small number – even just 1 – of samples in the summation in 

(4.2).  That is an undesirable situation, and we can do better.  We note that the “usable” 

rows of A in the orthogonalized system (4.1) constitute an approximate basis for the non-

null space of the matrix A. The remaining rows can be taken as being in the null space of 

A.  If we take each individual row of the original problem (2.1) and subtract from it its 

projection onto each of the usable rows of the orthogonalized system (and carry along the 

right hand side) we will be left with a (row) vector in A’s null space, and a right hand side 

value that should be zero were it not for error.  That is, we compute 

 

 (4.3)  for i=1,m 

ri = bi 

for k=1 to u 

dot = <A
k
,C

k
>/<C

k
,C

k
>    

A
k 
= A

k
 – dot*C

k
 

ri = ri – dot*bk  

 

Each resulting ri is a value which would be zero except for presence of error, and each 

such value is a biased estimate of σ.  It is biased primarily because the matrix C was 

computed from A, rather than being statistically independent of A.  To compute an 

unbiased estimate of σ from the ri we need to adjust the formula by the number of lost 

degrees of freedom, which results in the formula: 

(4.4)  σ= ∑
=

=−

mi

i

ir
um 1

21
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which differs from (4.2) in that the sum always has a full length of m.  

 

We should note that the development leading to formula (4.4) was for theoretical 

understanding.  It is not necessary to do the actual computation in that fashion.  The 

computation of r can be represented compactly as 

(4.5) )( bUVSAbr T

ur

+−=  

where +

urS  is the diagonal matrix of reciprocals of the first ur singular values, then zeroes.  

That is, r is the residual vector for the TSVD with ur retained singular values.  Then σ is 

computed as in (4.4). 

 

We have tested this approach on a range of problems, and find the resulting estimate of σ 

is often stunningly accurate.  And it is almost always at least useful.  

 

5. Determination of the Tikhonov Regularization Parameter λ.   With a good estimate 

of σ on hand we are then free to proceed with any of a variety of regularization methods 

which are based on the discrepancy principle (2.12). We will now briefly discuss 

implementation of Tikhonov regularization using the discrepancy principle as it is 

probably the most widely used regularization, and because it can be done especially 

efficiently.  [NR] includes a discussion of common variations of (2.10) using weighing 

matrices other than I. 

 

We must adjust λ  in (2.11) until the residual has the same norm as a vector with all 

entries equal to σ.  Since the rows after the usable rank, ur, already played their role by 

determining σ, we can perform this regularization using only the usable rows.  This 

reduction of the problem is, however, optional.     

 

Note that one does not recompute the SVD of the left hand side matrix in (2.11) for each 

newλ .  Rather, one proceeds as follows, substituting the SVD for A: 

 

(5.1)  







≈









0

b
x

I

USV T

λ
 

Multiplying through by the transpose of the left hand side gives    

(5.2) (VSU
T
USV

T
 + λ

2
I)x = VSU

T
b 

(5.3)  (VS
2
V
T
 + λ

2
VV

T
)x = VSU

T
b 

(5.4)  V(S
2
+ λ

2
I)V

T
x = VSU

T
b 

(5.5) (S
2
+ λ

2
I)V

T
x = SU

T
b 

(5.6)  bSISx ˆ)(ˆ 122 −+= λ  

So the addition of the conditioning equations, 0=Ixλ , replaces S
+ 
in (2.7) with                

(S
2
 + λ 2

I)
-1
S, and there is no need to recomputed the SVD. 

 

The search for the correct value of λ can be done in several ways.  A sophisticated 

approach would be to use Newton’s method to solve (2.12) as a general non-linear 

system. (Regtools does this.)  The correct value of λ can also be found with a 
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straightforward bisection search, using a lower of zero.  The upper limit can be set 

initially to a value such as s1 and then increased geometrically until it is large enough to 

cause a residual of at least n σ
2 
 in (2.12).  Bisection should continue until the residual is 

in a small interval about n σ
2
. Note that a solution of x=0 is a feasible if 

(5.8)  
2

2
b  <= n σ

2 

This feasibility should be checked before starting the search, as a solution of zero can be 

immediately returned.    

 

This method works well on the set of Fredholm integral equations problems we use for 

testing, plus pathological cases designed to stress the software.  It also performs well on 

all test problems in Hansen’s Regtools package [Regtools], using a problem size of 20 by 

20, and on most reasonable problem sizes. 

 

As a practical matter, a zero solution may be an undesirable or surprising result to return 

from an automatic algorithm.  If so, one can put an upper limit how much the solution is 

“smoothed”.  For example, the upper limit for λ can be limited.  If the upper end of the 

search range for λ is limited to λ < 0.33 s1 then reduction of the contribution to the 

solution from the first singular value will be limited to 10%.   

 

It is perhaps worth noting that this entire automatic regularization process can be 

performed with slightly inferior results without the cost of the SVD.  A row-wise Gram-

Schmidt orthogonalization can be used instead, but several algorithmic adjustments are 

required, including designing an appropriate row pivoting scheme.  And the resulting 

algorithm does not produce solutions as close to the true solution as the SVD method 

does.  But in cases where execution time is critical it might be worth considering. 

 

6. Non-negativity Constraints.   There are a variety of ways to adjust a system of 

equations so that the resulting solution is nonnegative.  The difficulty is to accomplish 

this constraint without unduly increasing the residual error or zeroing an unnecessarily 

large number of the xj.  One approach is to iteratively set to zero values of xj chosen by 

some methodology.  A specific xj can be set to zero by simply setting the corresponding 

column of A to zero. This approach tends to produce a small increase in residual error 

over the unconstrained least squares result. The choice of which sequence of xj to zero 

becomes the question. We are aware of no specific guidance in the literature for how to 

proceed with selecting which columns of A to zero when A is ill-conditioned, though 

methods such as [Hanson] seem appropriate. [Hanson] initially zeroes all columns, then 

one-by-one reintroduces columns back into the problem for which it can be determined 

that the corresponding xj remain non-negative.  Unfortunately, this introduction may 

cause other entries in x to go negative, so some backtracking is required.   

 

It is of some concern that setting columns of A to zero essentially reduces the domain of 

the solution, which may not be desirable.  An alternate approach might be to make 

adjustments to the right hand side.  For example, instead of zeroing column j of A  to 

make xj  zero, b could be made orthogonal to column j of A by subtracting away its 

projection onto column j.  But such methods provide no direct or indirect control over the 
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residual error, and typically produce very large residuals versus zeroing appropriate 

columns of A.   

 

We prefer a simple implementation of the non-negative constraint if possible, for a 

variety of reasons, including the extensibility of our  algorithms to more complex 

constraints, as discussed below.  Our experience with a number of variations of such 

column zeroing algorithms indicates that all reasonable approaches tend to zero nearly or 

exactly the same set of columns when applied to the inverse problems we use for testing.  

So we suggest a simple approach: simply zero the column of A corresponding to the most 

negative xj , and iterate until the solution is non-negative. At each iteration the solution to 

the newly modified  system must be computed.  There seem to be three reasonable ways 

to proceed when solving each newly modified system: 

1. start over completely, using the algorithms described above to compute a split, a 

value for σ, and a value for λ. 

2. assume that the previous value for σ is still valid, and just compute a new value 

for λ. 

3. simply reuse λ. 

Our suggestion is to take the last option: simply reuse the initially determined value of λ 

for all subsequent solutions.  One reason for this approach is that the there are theoretical 

questions as to the validity of our automated process when columns of A have been 

zeroed.  And indeed we have experienced fairly frequent failures in recomputing the split 

and/or σ after many columns have been zeroed.  Even starting with a fixed σ at each 

iteration has frequent difficulties.  Due to these experiences, and the poorly understood 

theory behind applying our algorithms after columns have been zeroed, we recommend 

the third option: after each column is zeroed, re-solve regularizing with the initially 

determined value of λ. The result is a robust, powerful, yet seemingly near-optimal 

method, which definitely converges in a limited number of steps. 

 

7. Equality and General Inequality Constraints.  Sometimes the user of such 

algorithms has extra constraints.  For example, if the solution is known to start at zero, 

then there is an equality of constraint of x1 = 0.  Or, the user may know about the 

presence of otherwise un-modeled symmetry which might be expressed as xi = xn-i for a 

range of i.  (Of course, when feasible such constraints should be directly modeled.)   Or, 

there may be information about bounds on some of the variables or other general 

inequality constraints.  We denote such equality constraints as 

 (7.1)  Ex = f,  where E is of size  me  × n. 

and denote inequality constraints as 

(7.2) Gx >= h, where G is of size mg  × n 

 

Equality constraints can be handled in a standard fashion, by subtracting from each row 

of (2.1) its projection onto all rows of (7.1), or more precisely, onto all rows of a row-

orthogonalized version of that system, fxE ˆˆ = .  We use row-wise Gram-Schmidt 

orthogonalization [Golub] to do this orthogonalization.  The reduced system is then re-

solved by using the chosen value of λ, and the solution is added to the solution to (7.1), 

which is simply fE T ˆˆ .  Inequality constraints can be handled in a manner consistent with 

our chosen method of achieving non-negativity.  That is, by iteratively selecting the row 
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of (7.2) which is most violated; moving it to the system of equality constraints; and re-

solving.  This is repeated until all remaining inequality constraints happen to be satisfied 

or all inequality constraints are so moved. 

 

Note that we now have two methods to enforce non-negativity: the method of Section 6, 

or using (7.2) to enforce xi > 0 for all i.  Fortunately, these two methods are precisely 

equivalent. 

 

The nature of equality constraints is typically such that the system (7.1) is 

underdetermined but otherwise well conditioned.  However, since the inequality 

constraints are implemented by selecting some to become equality constraints, the 

resulting expanded set of equality constraints may be inconsistent, ill-conditioned, or 

singular.  So, as we row-orthogonalize the expanded equality constraints we do row 

pivoting based on the largest remaining row norm, and discard rows whose norm is 

reduced dramatically as evidently redundant or conflicting.   

 

8. Example.  A companion paper in this conference’s proceedings [Daun] illustrates the 

performance of our method on an important real problem.  We present one example here 

for illustration.  The problem was a heat-equation-like problem with a kernel of 
))(( txtxe −−− .  Discretization was chosen to result in a matrix A of size 11 by 51, and the 

intended exact solution was chosen with the tent shape shown in color (or grey)  in (8.1). 

The right hand side was computed as b=Ax to avoid any modeling error, and then 

Gaussian noise with σ = 0.0003 was added to the right hand side values.   The 

automatically regularized non-negative solution proposed in this paper is shown in (8.1).  

This is an exceptionally good solution for this difficult problem.  The peak is particularly 

close to the ideal peak, and the region of zero solution is nearly perfectly reproduced.  

The estimated value of σ was 0.00035.  The estimated value of σ will typically be less 

accurate, as in this example, when m is small.  
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Figure 8.1 

 

 

 

9. Summary.  We have presented a method to estimate the right hand side error in a 

linear system when the “usable” rank is less than the number of rows.  Having this 

estimate in hand then enables application of a variety of regularization methods which 

use the discrepancy principle.  We focused on Tikhonov regularization due to its 

widespread use and efficient implementation. We presented a simple but effective 

approach to achieving non-negativity, and extended that method to general equality and 

inequality constraints. Implementations of the algorithm for C++, C, and Matlab are 

available from the author at www.rejonesconsulting.com or by email at 

rejones7@msn.com.  These implementations are built on a public domain SVD algorithm 

[TNT]. 
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